自动驾驶逻辑貌似很简单,但其实按照主流推断乘用车公共场所全自动驾驶要到本世纪中叶,那么当前自动驾驶发展的阻碍主要有哪些?
如前文讲到自动驾驶他主要采用deep learning而deep learning 的核心是把物体进行微分化处理再进行微分化逐步到局部整体的匹配识别,这就决定了它需要的算力TOPS强大,算力TOPS(Tera trillion” Operations Per Second) ?表示每秒万亿次操作。它主要是对最大可实现吞吐量的度量,是当前最直观评价AI芯片的能力指标。
感知定位是自动驾驶的前提,(详细了解感知点位以及优缺点点击自动驾驶八大定位感知)当前汽车主要采用雷达来测量前车距离,采用摄像头来识别物体,采用IMU,GNSS来预测车辆运动状态。
未来将采用激光雷达定位感知大部分障碍物,未来还会加入热成像技术来识别动物和夜间成像等。
根据yole的报告显示,未来实现自动驾驶整车上传感器的成本会是当前汽车上的传感器价格的8倍左右。
这些价格会来自于多种传感器的使用,传感器的精度和可靠度升级,同时由于整车布置原因也会来自于传感器布置融合例如车灯和雷达融合,蔚来汽车ET7自动驾驶雷达摄像头布置在都追求流线外形和低风阻设计的时代不得不说是不得已的步骤。
传感器数据融合,中央控制器数据处理,高效利用是高负载多数据自动驾驶所要求的电器架构但当前汽车的电器架构和供应商系列显然都还没有做好这个准备,当前电器架构是各种功能分布随着汽车产业发展然后互相不干涉或者很少互动叠加发展而来,举个例子很多豪车配备360环视摄像头但是他却难以在自动驾驶的仪表上显示虚拟环境,这显然就是没有进行数据融合处理。
所以当前汽车行业特别是传统汽车主机厂内部都在紧锣密鼓进行电器架构改革,当然更多是整个产业链都在进行因为电器架构牵扯到各个控制模块的输入输出逻辑,也牵扯着供应链的变革,传统的供应商Ter1 例如博世,大陆等受到华为,英伟达等强烈的挑战。
自动驾驶软件算法远比当前任何商用飞行器都复杂,下图为当前豪华车型软件数量,是15倍之多,如果加上日后的自动驾驶更是巨量增加。
机器学习和AI的概念至少从1960年代就已经存在了,其实20世纪80年代就存在的算法也做得非常好,但是直到2006年前后deep learning 都没有促发多大的进步。这可能仅仅由于其计算代价太高,而以当时可用的硬件难以进行足够的试验。所以当前自动驾驶算法的犹如我们文章当前自动驾驶方法的-限制和极限讲出的限制和极限其实更多是体现算法向算力和经济价值之间的妥协导致。
另一个重要部分就是企业内部进行算法形成时候的数据分析处理总结能力,这个需要强大的数据整理服务器系统来支持数据整理和算法形成。
总结
当然自动驾驶的落地是历史趋势,阻碍不是意味着停滞不前,恰恰阻碍就是机遇,以上四点也为当前自动驾驶热门方向。是当前汽车供应链转变和资金密集,人才聚集方向。
超级AI处理器
AI行业中的主要处理器类型有以下
-
CPU(中央处理单元)是为通用计算目的而设计的芯片,着重于计算和逻辑控制功能。它们在处理单个复杂的计算顺序任务方面很强,但是在大规模数据计算方面却很差。 -
GPU(图形处理单元)最初设计用于图像处理,但已成功地用于AI。GPU包含数千个内核,并且能够同时处理数千个线程。这种并行计算设计使GPU在大规模数据计算中极为强大。 -
FPGA(现场可编程门阵列)是可编程逻辑芯片。这种类型的处理器在处理小规模但密集的数据访问方面功能强大。此外,FPGA芯片允许用户通过其微小的逻辑块对电路路径进行编程,以处理任何种类的数字功能。 -
ASIC(专用集成电路)是高度定制的芯片,专门设计用于在特定应用中提供卓越的性能。但是,定制的ASIC一旦投入生产,就无法更改。 -
其他芯片类型,例如神经形态处理单元(NPU),其结构可模仿人脑,具有在未来成为主流的潜力,但仍处于开发的早期阶段。
所以当前第一个影响全自动驾驶的阻碍是AI芯片行业的制造设计。
高精度传感器
电器架构
自动驾驶软件以及算法